Completed projects





Shining a light on Vitamin D

Summer Student Nefisa Marium undertook a project to monitor vitamin D metabolism using human cell culture, rather than using mice. Her work will enable researchers worldwide to gain greater understanding of how vitamin D is truly handled in human health and disease.


Patient-based human liver organoids

Baransel Kamaz undertook a Summer Studentship in 2014 to directly study human liver cancer using human-derived cells, under the supervision of Dr. Meritxell Huch at the University of Cambridge. They hope that the results will replace pre-existing rodent models.


Brain tumours – Identification of common therapeutic targets in schwannomas and meningiomas

This research on schwannomas and meningiomas used a unique human cell culture model using cells derived from surgical patients. This has led to the identification and testing of new, targeted therapies and the team have successfully translated their research into early clinical trials. This approach has allowed them to screen approved drugs directly and go straight into clinical trials, avoiding pre-clinical animal trials.


Wound healing – High-throughput analysis of synthetic wound healing microenvironment

This project developed an engineered in vitro model of wound healing and then used it to identify the factors that regulate wound closure. It established a novel platform that could replace many mouse studies and improve pre-clinical testing of drugs and therapeutics.


Improving access to human material for diabetes research

The Skin Research Tissue Bank (STB) at Glasgow Caledonian University currently supports several different projects in diabetic wound healing, vascular problems with diabetes, diabetic retinopathy and cellular ageing. Our funding will help the STB to develop new types of human cell models that can replace animal experimentation on rodents.


Quantum dots – Multivalent quantum dot non-antibody binding protein imaging probes

This project is developing novel, sensitive and animal-free cancer imaging probes as an effective replacement for antibody-based diagnostic reagents widely used in clinical laboratories. At present, most current clinical cancer diagnostic reagents are antibody based and rely on the use of animals. Antibodies are generated by injecting a specific target antigen into an animal host, which includes mice, rats, rabbits, goats, sheep, chickens or horses.


Filtering out kidney disease research that uses animals

Dr Francis and her team have developed MRI as a replacement to animal techniques to study both the structure and function of healthy and diseased kidneys. Changes in kidney blood oxygenation and blood flow in healthy subjects and CKD patients will be measured using MRI and the findings will be compared with clinical measurements (blood samples and biopsies). Dr Francis aims to investigate whether MRI could be a reliable diagnostic tool for CKD.


Edentulousness – Developing a 3D organotypical model to assess skin and gum penetrating implant soft tissue outcomes and implant device development

The project’s objectives are to replace animal use in dental research by developing a 3D model of human gums that do not involve the use of any animal products. The model should be able to closely mimic the in vivo environment and model clinical outcomes for tooth root implants in vitro.


Growing the guts to improve drug uptake testing

Dr Martin Garnett and his team at the University of Nottingham have made a substantial contribution to making studies of drug uptake across the gut lining more accurate and realistic than existing animal and human cell models.


Testing novel leukaemia treatments

This project aims to assess the utility of induced pluripotent stem cells (iPSCs) as a relevant model system for the pre-clinical testing of novel therapies to target cancer stem cells, especially in leukaemia. Currently, scientists rely on animals, such as mice, for the early or preclinical development of novel therapies in cancer.